INSTRUCTIONS DE PLANIFICATION, DE MONTAGE ET DE SERVICE

PHOTOVOLTAÏQUE
TABLE DES MATIERES

1 INTRODUCTION .. 2

2 CONSIGNES DE SECURITE .. 2
 2.1 Dangers presentes par les systemes photovoltaiques ... 2
 2.2 Exploitation de l'installation ... 2
 2.3 Travail sur l'installation ... 2

3 COMPOSANTS PHOTOVOLTAIQUES ... 3
 3.1 Description des elements constitutifs du systeme .. 4
 3.2 Composants Panotron .. 6

4 CONCEPTION ET PLANIFICATION DU SYSTEME .. 8
 4.1 Prescriptions .. 8
 4.2 Determination des parametres des composants .. 8
 4.3 Exigences applicables a la toiture, a la sous-toiture et a la contre-ventilation 8
 4.4 Instructions de planification pas a pas .. 9
 4.4.1 Checklist pour la photovoltaique ... 9
 4.4.2 Analyse de l'ouvrage .. 9
 4.4.3 Releve detallie de l'ouvrage .. 9
 4.4.4 Structure de toiture ... 10
 4.4.5 Definition du champ generateur ... 11
 4.4.6 Realisation du projet .. 11

5 POSE DES MODULES ... 12
 5.1 Generalites ... 12
 5.2 Recommandations d'utilisation .. 12
 5.3 Recommandations de montage ... 12
 5.3.1 Repartition du travail / responsabilites ... 12
 5.4 Outils et auxiliaires necessaires ... 13
 5.5 Instructions de montage illustrees ... 13
 5.5.1 Preparation et pose des PowerBoxes ... 13
 5.5.2 Pose du cablage de chaine .. 13
 5.5.3 Pose du cablage de groupe PV ... 14
 5.5.4 Pose des modules PV .. 14
 5.6 Mise en service ... 14

6 MISE EN SERVICE DE L'INSTALLATION ... 15
 6.1 Declenchement d'urgence/procedure de coupure .. 15
 6.2 Entretien ... 15
 6.3 Nettoyage des modules photovoltaiques .. 16
 6.4 Marche a suivre en cas de derangement .. 16

7 NOTES 17
1 INTRODUCTION

Veuillez lire attentivement ces instructions de montage et de service avant de commencer l'installation, le service ou l'entretien de ce système photovoltaïque. Cette notice doit être conservée en lieu sûr.

Ces instructions de montage et de service contiennent des informations essentielles pour le montage du système d'énergie solaire Panotron. Elles fournissent par ailleurs des consignes de sécurité avec lesquelles vous devez vous familiariser. L'inobservation de ces informations et consignes pourrait occasionner des blessures physiques et des dégâts matériels.

Les conditions générales, de livraison et modalités de paiement (CG) sont applicables.

2 CONSIGNES DE SECURITE

2.1 Dangers présentés par les systèmes photovoltaïques

- Tensions dangereuses
 Les tensions continues supérieures à 120VDC sont considérées présenter un danger mortel en cas de contact. Ce système d'énergie solaire fonctionne avec une tension d'array (tension de module) de <50VDC (module PV vers PowerBox) et avec une tension de string pouvant atteindre 1000VDC (PowerBox vers onduleur).

- Installation continuellement sous tension
 En principe, les modules photovoltaïques se trouvent toujours sous tension, même au crépuscule lorsque la luminosité est faible.
 Évitez à tout prix les contacts avec des parties sous tension.

- Danger de formation d'arcs
 Les modules photovoltaïques produisent du courant continu. Dans certaines circonstances, les arcs électriques ne peuvent plus s'éteindre spontanément, car contrairement au courant alternatif, il ne se produit pas de passage à zéro.
 Les arcs électriques peuvent causer des blessures physiques ou des dégâts matériels.

2.2 Exploitation de l'installation

Lorsqu'il est constaté qu'une exploitation sans danger ne peut pas être garantie, comme par exemple en présence de défauts apparents sur l'installation, les éléments constitutifs ou les appareils, lorsque l'installation ne fonctionne plus ou qu'elle a été utilisée dans des conditions défavorables, il convient de mettre l'installation hors service, de la protéger contre tout réenclenchement intempestif et de la faire vérifier par un spécialiste.

Les câbles ou des appareils électriques défectueux doivent être remplacés immédiatement.

2.3 Travail sur l'installation

Les interventions sur l'installation photovoltaïque sont exclusivement réservées au personnel spécialisé et doivent être exécutées hors tension.

- A partir d’une hauteur de chute de 3m, il s’agit de prendre des mesures appropriées contre tout risque de chute autour du toit (par ex. paroi de retenue côté chêneau, protections latérales côté pignons).
 Feuillet sur la sécurité au travail de la SUVA: Montage et entretien d'installations solaires.

- Evitez de marcher sur les modules photovoltaïques, danger de glissement! Toutefois, ceci ne risque pas d'endommager les modules PV. Pour des raisons de sécurité, lors de déplacements sur le toit, marchez dans les espaces entre modules, et les zones de tuiles non recouvertes.
3 COMPOSANTS PHOTOVOLTAÏQUES

1. Module PV

2. Array PV

3. PowerBox

4. String PV

5. Générateur PV
 - Module PV
 - Groupe PV
 - PowerBox
 - Chaîne PV

6. SPD

7. Sectionnement DC

8. Onduleur

9. Coupe-circuits

10. Compteur d'énergie

11. Détails array PV

12. Détails générateur PV

13. Installation domestique

14. Réseau local

Tableau principal

Installation électrique

Prévoir place de compteur additionnel pour injection RPC

Câble solaire ≥ 1x6mm²

Cable solaire ≥ 1x6mm²

Typ 1

Typ 2

TT ≥ 6mm²

FF

FF

KWh

13. Interrupteur de l'installation

No. de modules 0

Modules pcs 0

Puissance Wp 0

Info string 760 VDC 0 ADC
3.1 Description des éléments constitutifs du système

1. Module photovoltaïque (module PV)
Le module photovoltaïque (PV) permet de convertir directement la lumière solaire en courant électrique. Cette conversion se produit grâce à l'effet photovoltaïque. Le nom de cet effet provient de "photo" pour la lumière et de "Volt" pour la tension électrique. Les éléments réalisant cet effet sont appelés cellules photovoltaïques. La combinaison de cellules photovoltaïques en un panneau (20 cellules par panneau) pour former une unité de quatre pièces (module PV) permet d'obtenir un rendement énergétique optimal et facilite le travail de montage et d'entretien. Par couplage en série de quatre panneaux PV, on obtient une tension de module PV [\(U_{MPP}\)] de 40VDC.

Les modules PV correspondent à la classe d'utilisation A et peuvent engendrer des tensions continues et des puissances dangereuses en service (supérieures à 120VDC selon IEC 61730). Les modules de cette classe d'utilisation peuvent être intégrés dans des installations librement accessibles à condition que les prescriptions y relatives soient respectées. Dans la mesure où l'installation électrique est exécutée conformément aux prescriptions, les modules solaires Panotron, agréés dans cette classe d'utilisation selon IEC 61730, satisfont les exigences imposées pour la classe de protection II.

Les modules PV Panotron sont exploitables dans les conditions d'environnement spécifiées par IEC 60364-5-51 (-40°C à +85°C).

2. Array photovoltaïque (Array PV)
Sur une rangée (alignement latéral de tuiles), les modules photovoltaïques sont rassemblés en array PV au moyen de câbles d'array préfabriqués. Le couplage en parallèle présente l'avantage qu'une indisponibilité de panneaux PV individuels (par exemple en raison d'ombrage) ne se répercute que sur le module concerné, mais pas sur l'ensemble d'array PV ni le générateur PV. Les modules d'une rangée (array PV) ne doivent être reliés entre eux qu'en parallèle!

Spécifications des câbles: HIKRA C PV1-F, section: 2x4mm², plage de température: -40°C à +90°C

3. PowerBox (PB)
Grâce à la mise en œuvre de modules de branchement dits PowerBox, les différents array PV sont réunis pour former un string. De surcroît, cette disposition permet de surveiller les array PV individuels, et le cas échéant, de les déconnecter en manœuvrant un interrupteur marche/arrêt sur l'onduleur, l'unité de commande ou les coupe-circuits intercalés. Les PowerBox séparent alors l'array PV considéré du string. De cette manière, lorsque l'onduleur se trouve hors service, seule la tension à vide des modules PV sur le toit est présente.

La puissance correspondante de la PowerBox défini le nombre maximum de modules PV connectables en parallèle. Pour de plus amples renseignements, se reporter au chapitre Fehler! Verweisquelle konnte nicht gefunden werden.

4. String photovoltaïque (String PV)
Les PowerBox sont connectés en série pour former un string PV, et fournissent l'énergie produite à l'onduleur via le câble string, pour la convertir en courant alternatif. De l'onduleur jusqu'au point de branchement sur le toit, les câbles doivent être posés sur toute leur longueur dans des tubes ignifuges ou difficilement combustibles.

Pour de tels circuits, utiliser exclusivement des câbles solaires correspondant au minimum aux propriétés suivantes:
- Double isolation
- Plage de température (-40°C à +90°C)
- Résistance aux UV et aux intempéries
- Tension de service 1000VDC

5. Générateur PV
Le générateur photovoltaïque est composé des éléments décrits ci-dessus, à savoir modules PV, array PV, PowerBox et string PV. Il rassemble tous les composants producteurs d'énergie disposés du côté courant continu.
6. Parasurtensions (SPD)
Les parasurtensions ou SPD (anglais: Surge Protection Devices) sont insérés dans le réseau de distribution d’énergie pour protéger les personnes, les équipements et les appareils contre des surtensions impulsives de courte durée et inadmissibles.
Ces surtensions peuvent être occasionnées par les effets suivants: décharges atmosphériques (foudre) proches ou distantes, arcs dans le réseau de distribution et dans la terre ou tensions induites par des lignes électriques voisines.
Dans les bâtiments où une installation de protection contre la foudre est présente ou prévue, la pose de surtensions supplémentaires est nécessaire des côtés courant continu et courant alternatif, tout comme leur intégration au système parafoudre.

7. Point de sectionnement DC
Selon la conception du générateur PV, le générateur PV et l’onduleur peuvent être séparés par un interrupteur à courant continu ou un connecteur de sectionnement à courant continu.

8. Onduleur
Le courant continu produit par le générateur PV est converti en courant alternatif par l’onduleur (également appelé convertisseur). L’onduleur constitue le maillon de liaison entre le générateur PV et le réseau local de distribution électrique. Par ailleurs, cet appareil stocke les données d’exploitation et surveille le branchement au secteur de l’installation photovoltaïque.

9. Coupe-circuit
Le coupe-circuit, également appelé disjoncteur de surcharge, assure la protection des câbles et des composants de l’installation PV contre des courants excessifs. En outre, cette protection est également utilisable pour la coupure de l’installation.

10. Compteur d’énergie
Le compteur d’énergie est chargé d’enregistrer la quantité d’énergie produite par l’installation photovoltaïque et délivrée dans le réseau local de distribution. L’énergie solaire est ainsi enregistrée dans le réseau local de distribution, et mise à la disposition d’autres consommateurs.
Le compteur d’énergie est également utilisé par le fournisseur d’électricité local pour la saisie et le décompte de l’énergie consommée par l’installation locale.

11. Détails d’array PV
Données résumées d’array PV concerné telles que nombre de modules par array, courant et puissance d’array.

12. Détails du générateur PV
Données résumées du générateur PV concerné comme par exemple nombre de modules, puissance, tension et courant du string.

13. Interrupteur AC de l’installation
Cet interrupteur sert à déclencher l’installation, et le cas échéant à la protéger contre tout réenclenchement intempestif.

14. Consommateurs
Par consommateurs, on entend l’ensemble de tous les consommateurs d’énergie. Un consommateurs peut être une lampe à basse consommation, un four ou un ordinateur.

15. Réseau local de distribution
Le réseau local de distribution, ou le réseau électrique public alimente les consommateurs finaux (ménages, artisans) en énergie électrique. Il est généralement exploité par les fournisseurs d’énergie locaux, ou par l’exploitant du réseau, comme par exemple Axpo, BKW.
3.2 Composants Panotron

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuile solaire</td>
<td></td>
<td>La tuile solaire est optimisée pour recevoir un module PV et sert de surface de montage des modules PV. Fonctionnement et autres informations: www.gasserceramic.ch</td>
</tr>
</tbody>
</table>

Module photovoltaïque

La position module photovoltaïque est formée des positions individuelles suivantes:

<table>
<thead>
<tr>
<th>Position</th>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module PV</td>
<td></td>
<td>Le module PV est formé de quatre panneaux. Il est fixé sur la tuile solaire au moyen de clips de fixation au montage.</td>
</tr>
<tr>
<td>Diode de module 1</td>
<td></td>
<td>La diode de module protège le module PV des courants en retour.</td>
</tr>
<tr>
<td>Clip de fixation</td>
<td></td>
<td>Le clip sert à fixer les panneaux PV sur la tuile, et doit impérativement être posé sur chaque tuile.</td>
</tr>
<tr>
<td>Panneau borgne</td>
<td></td>
<td>Les panneaux borgnes servent à unifier la présentation en recouvrant les tuiles non garnies de modules PV.</td>
</tr>
<tr>
<td>Engobe froide</td>
<td></td>
<td>Les tuiles entières ou fraisées peuvent alternativement être colorées avec une engobe froide Panotron (non dilué) appliqué au rouleau.</td>
</tr>
</tbody>
</table>

Array photovoltaïque

La position array PV est formée des positions individuelles suivantes:

<table>
<thead>
<tr>
<th>Position</th>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Câble array PV 1</td>
<td></td>
<td>Le câble d’array comprend des points de connexion de modules préconfectionnés, qui sont implantés directement le long de la rangée de tuiles.</td>
</tr>
</tbody>
</table>

1 Variante: Diode de module intégrée dans le câble d’array
Composants Panotron, suite

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pièce terminale array</td>
<td></td>
<td>Chapeau thermorétractable permettant de terminer le groupe</td>
</tr>
<tr>
<td>Connecteur mâle MC4</td>
<td></td>
<td>Connecteur pour liaisons suivantes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Array PV au PowerBox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PowerBox au string PV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• String PV à l’onduleur</td>
</tr>
<tr>
<td>Connecteur femelle MC4</td>
<td></td>
<td>Connecteur pour liaisons suivantes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Array PV au PowerBox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PowerBox au string PV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• String PV à l’onduleur</td>
</tr>
<tr>
<td>Obturateur mâle MC4</td>
<td></td>
<td>Obturateur pour scellement de connecteurs PV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(branchement de modules) inoccupés.</td>
</tr>
<tr>
<td>Obturateur femelle MC4</td>
<td></td>
<td>Obturateur pour scellement de connecteurs PV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(branchement de modules) inoccupés.</td>
</tr>
</tbody>
</table>

Onduleur et PowerBox

La position onduleur et PowerBox est formée par exemple des positions individuelles suivantes:

- **Onduleur**
 - L’onduleur est défini en fonction de l’objet.
 - Détails relatifs aux composants SolarEdge: www.solaredge.fr

- **PowerBox**
 - Les PowerBox sont définis en fonction de l’objet. La puissance de la PowerBox détermine le nombre maximum de modules PV pouvant être reliés en parallèle.
 - Les vis de fixation sont livrées avec l’appareil.
4 CONCEPTION ET PLANIFICATION DU SYSTEME

Veuillez observer les instructions de montage et de service, ainsi que les consignes de sécurité des composants fournis et des accessoires.

4.1 Prescriptions

La responsabilité pour le respect de l'ensemble des normes, prescriptions de construction et directives de prévention des accidents incombe au spécialiste de l'installation/installateur. Dans le cas particulier, les prescriptions applicables juridiquement pourraient s'écarter des spécifications de la présente notice.

Pour obtenir les informations relatives aux exigences de construction, de montage et d'inspection applicables, s'adresser aux autorités compétentes avant de débuter le montage.

Les normes et prescriptions suisses indiquées ci-dessous ne sont citées qu'à titre indicatif, et ne sont pas censées être exhaustives.

- Norme SIA 261: Actions sur les structures portees
- Norme SIA 232: Toitures inclinées
- NIV: Ordonnance sur les installations électriques à basse tension
- NIN 2010: Norme pour installations électriques à basse tension, notamment le chapitre 7.12
- ESTI 219.0201 f: Mise en parallèle d'installations autoproductrices (IAP) avec le réseau basse tension
- ESTI 233.0710 f: Photovoltaïque solaire (PV) - Systèmes d’alimentation électrique – Juillet 2010
- VKF/AEAI/AICAA: Guide de protection incendie: Capteurs et panneaux solaires
- Swisssolar: Papier sur l’état de la technique relatif au Guide de protection incendie AEAI

4.2 Détermination des paramètres des composants

L'exploitation d'une installation photovoltaïque à l'air libre peut engendrer des courants et tensions de modules plus élevées que celles indiquées dans les conditions d'essai normalisées (STC). Afin de déterminer les tensions des composants, les sections de conducteurs, les calibres des fusibles et de calculer les appareils devant être raccordées aux modules PV, il convient de multiplier les valeurs Isc et Uoc indiquées sur les modules par un facteur de 1.25.

4.3 Exigences applicables à la toiture, à la sous-toiture et à la contre-ventilation

D'une manière générale, il s'agit d'observer les règles applicables en couverture pour la conception de la toiture, de la sous-toiture et de la lame d’air.

Une amélioration de la lame d’air entre la couverture de tuiles en terre cuite et la sous-toiture peut être obtenue en augmentant la hauteur du contre-lattage (min. 45mm, recommandation 60mm) ainsi que des ouvertures de ventilation sur le faîte et les rives. La durée de vie de la sous-toiture s’en trouvera augmentée, tout en assurant un meilleur rendement de l’installation photovoltaïque à températures élevées également.

En présence de secteurs exposés aux incendies sous la toiture, une sous-toiture doit impérativement être réalisée, au minimum conformément aux prescriptions AEAI 4.2.

Afin de prévenir des dommages à l’installation photovoltaïque, il convient de prendre des mesures contre la pénétration de rongeurs sous l’enveloppe du toit.

Statique

Vérification de la structure de la toiture et de la sous-toiture pour la résistance à une charge supplémentaire (<10kg/m2) attribuable aux composants PV.

Sécurité d’accès à la toiture

Une installation solaire est un équipement technique nécessitant des contrôles périodiques. Lors de la planification et de l’installation, il s’agit de prévoir des possibilités d’accès pour que le montage et les contrôles ultérieurs puissent s’effectuer en toute sécurité. Des dispositifs antichute (points d’accrochage, rails linéaires ou cordages) doivent être installés au moment du montage de l’installation, où être prévus ultérieurement avant un contrôle ou un entretien.

Retenues de neige et garde-neiges

Au cas où des glissements de neige risquent de blesser des personnes et d’endommager des biens, il s’agit de prévoir des systèmes de retenue. Aucun module PV actif ne devra être posé dans ces zones.

2 AEAI: Indice d'incendie AEAI, autres informations voir: www.praever.ch
4.4 Instructions de planification pas à pas

4.4.1 Checklist pour installation photovoltaïque

Cette Checklist sert à la saisie préliminaire du client / de l’ouvrage et à déterminer l’adéquation de l’équipement.

Les données suivantes sont nécessaires pour une première évaluation:

1. Références du client
2. Site de l’objet
3. Indications relatives au toit
4. Croquis du toit, si possible photos
5. Si disponible, plan de l’objet, plan du toit, plan de coupe

4.4.2 Analyse de l’objet

Sur la base des informations récoltées, il est possible de procéder à l’analyse de l’objet. Le cas échéant, celle-ci peut être confiée à Panotron.

Cette analyse est utile en premier lieu au propriétaire de l’installation, comme base de décision. Ces informations sont également utiles pour l’enregistrement (demande de raccordement EVU\(^3\)) et aux autorités (Swissgrid / ESTI\(^4\)).

L’installation photovoltaïque est définie par les critères suivants:

1. Information sur l’ouvrage
2. Coût de l’énergie
3. Taille de l’installation
4. Budget d’investissement
5. Recettes possibles
6. Subventions possibles

\(\text{PVGIS: } \text{http://re.jrc.ec.europa.eu}\)
\(\text{www.swissgrid.ch } & \text{www.swissolar.ch}\)

4.4.3 Relevé détaillé de l’objet

Avant qu’une offre puisse être établie, il s’agit de procéder à un relevé détaillé du toit à équiper de modules PV, ainsi que des obstacles tels que cheminées, ventilations, fenêtres de toit, etc., sur place ou sur la base de plans de réalisation.

Le „plan de disposition” à l’échelle 1:50 ci-joint est utile à cet effet. Le toit peut ainsi être défini sur la base de la trame de tuiles et de modules.

► Quatre tuiles côte à côte constituent la plateforme de montage d’un module PV.

► La répartition d’un module sur 2 rangées superposer n’est réalisable que par un professionnel. Deux connecteurs mâles et femelles MC ainsi qu’un câble de 0.4m sont en plus nécessaires.

► Les tuiles recouvrables restantes peuvent être garnies de panneaux borgnes, pouvant être repeints à la couleur des modules avec de l’engobe froide.

\(^3\) EVU: Fournisseurs d’électricité

\(^4\) ESTI: Inspection fédérale des installations à courant fort
4.4.4 Structure de toiture

- Les points à observer sont les suivants:
- Règles de l’association des couvreurs.
- L’espacement des lattes pour le module PV est de 380mm.
- Pour une installation PV, un lattage courant de 28x48mm est suffisant.
- Une sous-toiture est toujours nécessaire pour assurer la lame d’air et la protection contre les rongeurs.
- Un accès sûr aux installations solaires sur le toit doit être assuré en tout temps et doivent être équipé par des points d’accrochage pour s’encorder.
- Dès que les composants ont été installés dans la sous-toiture, le toit doit être couvert et être terminé pour assurer la protection des câbles et contre la salissure.

Remarques relatives à l’adaptation de la structure du toit à l’espacement fixe du lattage:

Idéalement, la sous construction doit être adapté à la largeur fixe des lattes. En cas de transformation et d’assainissement, la longueur des chevrons est souvent fixe ou guère adaptable; par conséquent, les possibilités suivantes doivent être examinées:

- Adapter la longueur des chevrons
- Monter des tuiles coulissantes
- Créer un dépassement
- Solution d’urgence: fraiser les tuiles

Coupe longitudinale et transversale de la toiture

![Diagramme de coupe longitudinale et transversale de la toiture]

<table>
<thead>
<tr>
<th>Inclinaison</th>
<th>17°</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance DF</td>
<td>5.3</td>
<td>5.2</td>
<td>4.8</td>
<td>4.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Distance x</td>
<td>1.8</td>
<td>2.2</td>
<td>3.6</td>
<td>5.2</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Toutes cotes en cm. Informations détaillées sur la tuile Solar-F: www.gasserceramic.ch
4.4.5 Définition du champ générateur

La conception électrique du système est prise en charge par un électricien compétent et ou spécialiste solaire. A cet effet, il faut disposer de connaissance spécialisées en matière de production d'énergie solaire, de normes et prescriptions électrotechniques et d'onduleurs.

Définition du champ générateur

Les points à observer sont les suivants

- Nombre de rangées (alignement latéral des tuiles)
- Nombre de tuiles de la rangée divisible par 4 si possible (largeur de module)
- Seules des tuiles entières peuvent être montées, non usinées et disposant d'un espace libre suffisant pour la pose des array PV.
- Obstacles tels que fenêtres de toit, cheminées, garde-neige ou retenues, câbles de paratonnerre, points d'accrochage, etc., y compris rives de ferblanterie.

Dans une situation normale, un module PV est capable de produire, dans les conditions attendues, des valeurs de courant et/ou de tension plus élevées que celles indiquées dans les conditions d'essai normalisées. Afin de déterminer les valeurs de tension assignée des composants, d'intensité assignée des conducteurs, les calibres des fusibles et le calcul des commandes devant être raccordés aux modules PV, il convient de multiplier les valeurs Isc et Uoc indiquées sur les modules par un facteur de 1.25.

Composants Panotron: www.gasserceramic.ch

4.4.6 Réalisation du projet

Pour la réalisation du projet, il est recommandé d'organiser une séance de coordination sur place avec les parties concernées (maître d’ouvrage, couvreur et électricien. Les points suivants doivent être éclaircis:

- Responsable de l'enregistrement (RPC, demande de raccordement, documentation ESTI, concept parafoudre).
- Définition des travaux et des compétences
 - Préparation de la sous-toiture: dimensions et division selon plan de disposition.
 - Montage des PowerBox, établissement des strings.
 - Pose des câbles d’array selon plan de disposition
 - Pose des tuiles et des modules
- Définition de l'emplacement des composants tels que compteurs, onduleurs, chemins de câbles, etc.
- Définition des délais (livraison du matériel, montage dans la sous-toiture, pose des tuiles et des modules, mise en service)
5 POSE DES MODULES

5.1 Généralités
Afin d’éviter tout risque de sécurité, il s’agit, indépendamment du lieu d’installation, de prendre les mesures de sécurité adéquates et d’utiliser l’équipement de sécurité nécessaire.

A cet effet, veuillez observer les instructions de montage et de service ainsi que les consignes de sécurité des composants fournis et des accessoires mis en œuvre.

5.2 Recommandations d’utilisation
- N’exercez pas de pression excessive sur les surfaces des panneaux PV et évitez de les plier.
- Évitez d’infliger des chocs et des coups sur les panneaux/modules.
- Évitez d’endommager le film au verso par des rayures.
- Évitez d’endommager les câbles de raccordement en les pliants, en les pinçant ou en les coupant.
- Évitez de transformer les panneaux et modules PV.
- Évitez de concentrer artificiellement des rayons solaires sur les modules.

5.3 Recommandations de montage
- Pour le montage, les modules ne sont compatibles qu’en association avec des tuiles Panotron-Solar-F.
- Les travaux en hauteur doivent être planifiés. À partir d’une hauteur de chute de 3 m, il s’agit de prendre des mesures appropriées contre tout risque de chute tout autour du toit (par ex. paroi de retenue côté chêneau, protections latérales côté pignons).
- N’effectuez aucun travail sur le générateur PV en cas de pluie, de neige ou de vent.
- Évitez de marcher sur les modules photovoltaïques; risque de glissement. L’endommagement des modules est toutefois exclu. Pour des raisons de sécurité, utilisez les intervalles entre tuiles et non pas les modules.
- Jusqu’au moment de leur montage, conservez les modules photovoltaïques dans leur carton d’origine.
- Utilisez toujours des outils isolés, jamais d’outils mouillés ou humides.
- Veillez à relier correctement les connecteurs mâles et femelles afin d’assurer le bon fonctionnement à long terme.
- Assurez-vous de faire cheminer tous les câbles et conducteurs du système Panotron comme prévu, derrière les tuiles et entre le lattage transversal, et qu’ils ne puissent être endommagés.
- Évitez de séparer les connecteurs lorsque l’installation se trouve sous tension.
- Dès que les PowerBox et les câbles d’array sont posés, commencer la couverture de tuiles et la pose des modules, ou prendre les mesures nécessaires pour la protection des composants contre la salissure et la détérioration doivent être prise.

5.3.1 Répartition du travail / responsabilités
5.4 Outils et auxiliaires nécessaires

<table>
<thead>
<tr>
<th>Outils et auxiliaires</th>
<th>Description</th>
<th>EAN Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinces à dénuder</td>
<td>pour dénuder les câbles PV, par ex. pinces Knipex</td>
<td>40037734003773</td>
</tr>
<tr>
<td></td>
<td>EAN Nr.: 40037734003773</td>
<td></td>
</tr>
<tr>
<td>Pinces à sertir</td>
<td>pour connecteurs mâles et femelles, par ex. pinces Knipex</td>
<td>4003773071587</td>
</tr>
<tr>
<td></td>
<td>avec insert MC4, EAN Nr.: 4003773066699</td>
<td></td>
</tr>
<tr>
<td></td>
<td>avec positionneur MC4, EAN Nr.: 4003773066736</td>
<td></td>
</tr>
<tr>
<td>Clés de montage</td>
<td>pose des connecteurs mâles et femelles, par ex. jeu d'outils</td>
<td>4003773074106</td>
</tr>
<tr>
<td>Chalumeau</td>
<td>pour la contraction des pièces d'extrémité de groupe</td>
<td></td>
</tr>
<tr>
<td>Craie de marquage</td>
<td>pour le marquage de la position des tuiles et des câbles de groupe</td>
<td></td>
</tr>
<tr>
<td>Câble solaire</td>
<td>Pour la liaison des PowerBox avec l'onduleur selon le schéma de principe</td>
<td></td>
</tr>
</tbody>
</table>

5.5 Instructions de montage illustrées

5.5.1 Préparation et pose des PowerBox

Définir la subdivision des tuiles et marquez sur le lattage par unités de 4 (largeur d'un module).

Définir la position des PowerBox (PB) selon le plan de disposition. La puissance des PowerBox donne le nombre maximum de modules PV raccordables en parallèle.

Fixez les PowerBox sur le contre-lattage. Les instructions correspondantes sont données dans la notice de l'onduleur.

(Reprise du numéro de série sur l'étiquette ou via l'APP de Solaredge; voir la notice de l'onduleur)

5.5.2 Pose du câblage de string

Pose du câblage de string (PB à PB à WR) selon le plan de disposition, en reliant la connexion OUTPUT (+) à la connexion OUTPUT (-) du PB suivant.

Si les câbles de liaison des PB sont trop courts, fabriquer des rallonges. Câble OUTPUT (+) vers OUTPUT (-) du PB suivant.

OUTPUT string = liaison longue
5.5.3 Pose du câblage d’array PV

Poser le câblage d’array selon le plan de disposition. Disposer le point de connexion du module sur le milieu du module PV (quatre tuiles).
Pour une installation complexe, il est utile de repérer le cheminement du câblage et des extrémités de câble avec de la craie de marquage. Assurez-vous que tous les câbles et conducteurs du système Panotron sont bien posés comme prévu, derrière les tuiles et entre le lattage.

Terminer les câbles d’array avec les capuchons d’extrémité (capuchons thermorétractables).
Obturera les points de connexion de modules inutilisés, par ex. en raison d’un contournement d’obstacles, avec des capuchons d’extrémité.

Relier les connecteurs mâles MC4 et les connecteurs femelles MC4 selon les instructions du fabricant pour le raccordement des PB.
Câble d’array „noir“ avec connecteur mâle sur PB[.-].
Câble d’array „rouge“ connecteur femelle sur PB [+].

5.5.4 Pose des modules PV

Couverture avec tuiles solaires (Solar-F), quatre pièces.
Pose des modules PV de droite à gauche.
Ajustement du module PV dans la cavité de la tuile et dans le logement en observant la position des câble

Connexion de la diode de module entre le câble de raccordement (+) du module PV „noir“ et le point de raccordement du câble de groupe „noir“.
Raccordement du négatif (-) en reliant le câble de „rouge“ avec le point de raccordement du module „rouge“

Fixation des panneaux PV à l’aide des clips de fixation.
Ces clips servent à fixer les panneaux PV sur les tuiles et doivent impérativement être montés sur chaque tuile!
Ajuster les panneaux PV et les câbles de raccordement.
Reprendre le chapitre 4 jusqu’à terminer la couverture.

5.6 Mise en service

Pour la mise en service, veuillez observer les documents livrés avec les PowerBox et l’onduleur, ainsi que les prescriptions de raccordement et de réception par des tiers. Avant de la mise en service, un contrôle de l’installation par du personnel qualifié en installation photovoltaïque ou électrique se doit de faire et doit être documenter avec le protocole suivant : Swissolar Protocole d’essais - mesures.
6 EXPLOITATION DE L'INSTALLATION

Une fois que l'installation photovoltaïque a été mise en service, celle-ci fonctionne automatiquement et généralement sans entretien. Des contrôles réguliers permettent d'éviter qu'une panne non remarquée entraîne des pertes de production (voir le chapitre 2).

Le fonctionnement de l'installation est piloté et surveillé par l'onduleur. L'état opérationnel de l'installation est signalisé par les témoins de service et de défaut. Pour plus de renseignements concernant les témoins, veuillez vous reporter à la notice de l'onduleur.

6.1 Déclenchement d’urgence/procédure de coupure

Des interventions sur l'installation ou des perturbations peuvent rendre nécessaires une déconnexion de l'installation par rapport au réseau. Veuillez observer en sus les prescriptions de coupure dans la notice de l'onduleur.

Marche à suivre:

1. Déclencher l'onduleur en actionnant son interrupteur marche/arrêt.
2. Déconnectez l'onduleur du réseau (déclenchez le court-circuit et verrouillez-le pour prévenir tout réenclenchement)
3. Séparez l'onduleur du générateur PV au point de sectionnement DC.

L'installation photovoltaïque se trouve à présent déconnectée. Néanmoins, des tensions à vide peuvent encore subsister du côté courant continu (côté du générateur PV).

Pour rétablir le fonctionnement normal de l'installation, procéder dans l'ordre inverse.

6.2 Entretien

Les installations photovoltaïques se passent généralement d’entretien. Tant qu'aucun dérangement n'est affiché sur les appareils, l'onduleur et les modules PV ne nécessitent aucun contrôle fonctionnel. Toutefois, des programmes d'entretien réguliers par l'exploitant ou par l'installateur permettront d'éviter de longues périodes d'immobilisation et ainsi d'optimiser le rendement.

<table>
<thead>
<tr>
<th>Checklist d’entretien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaque jour</td>
</tr>
<tr>
<td>Chaque mois</td>
</tr>
<tr>
<td>Chaque année</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

PANOTRON
Panotron AG | Ziegeliei 8 | CH-3255 Rapperswil BE | T +41 31 879 65 40 | F +41 31 879 65 49
panotron@gasserceramic.ch | gasserceramic.ch
6.3 Nettoyage des modules photovoltaïques

MISE EN GARDE: Avant de procéder à un nettoyage, observez impérativement toutes les consignes de sécurité énoncées au chapitre 2. Ne risquez pas des blessures physiques pour gagner un peu de rendement!

A partir d’un angle de toit de 15°, on considère qu’en Europe centrale les modules PV commencent à être nettoyés spontanément par les précipitations comme la neige et la pluie.

En cas d’encrassement prononcé, par exemple par des feuilles mortes, des pollens, des excréments d’oiseaux, de la poussière de l’air ou autres, les modules PV doivent être soumis à un nettoyage manuel.

Pour le nettoyage, utilisez exclusivement de l’eau peu calcaire et un moyen de nettoyage délicat (par ex, éponge ou chiffon doux, balai souple pour le déneigement) sans détergent supplémentaire ni outils susceptibles de provoquer des rayures ou autres dégâts sur les modules PV.

6.4 Marche à suivre en cas de dérangement

Lorsqu’un dérangement se présente, gardez à l’esprit que c’est votre installateur qui connaît le mieux votre installation photovoltaïque. Il a d’ailleurs toujours intérêt à ce que vous soyez entièrement satisfait de votre investissement. Il sera prêt à vous aider lorsque nécessaire, ou lorsque vous souhaitez agrandir votre installation.

<table>
<thead>
<tr>
<th>Dérangements possibles</th>
<th>Onduleur</th>
<th>PowerBox</th>
<th>Câblage</th>
<th>Modules</th>
<th>Toiture/Sous-toiture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Il ne fonctionne pas/témoins</td>
<td>Dérangeement</td>
<td>Dérangeement</td>
<td>Endommagement</td>
<td>Endommagement</td>
</tr>
<tr>
<td></td>
<td>Contrôlez les coupe-circuits, l’interrupteur marche/arrêt sur l’appareil ainsi que le dispositif de sectionnement. Si le service ne peut pas être rétabli, prenez contact avec votre installateur électrique.</td>
<td>Pour les détails concernant le dérangement affiché, reportez-vous à la notice de l’onduleur.</td>
<td>Veuillez vous adresser à votre installateur pour le remplacement de l’élément défectueux.</td>
<td>Mettez l’installation hors service et adressez-vous votre installateur électrique.</td>
<td>Faites remplacer le module défectueux par votre couvreur dans les plus brefs délais.</td>
</tr>
</tbody>
</table>